Assessing Human-Fluid-Structure Interaction for the International Moth
نویسندگان
چکیده
The International Moth is an ultra-lightweight foiling dinghy class. Foil deflections and dynamic sailor-induced motions are identified as two key areas relating to foiling moth performance that are currently ignored in Velocity Prediction Programs (VPP). The impact of foil deflections is assessed by measuring the tip deflection and twist deformation of a T-foil from an International Moth. The full field deformation due to an applied load is measured using Digital Image Correlation (DIC). The foil’s structural properties can then be determined based on the measured structural response. The deformations are then calculated for an estimated steady sailing force distribution on the T-foil and their impact on performance is evaluated. To investigate the impact of dynamic sailor motions a system is developed that allows a sailor’s dynamic pose to be captured when out on the water by determining the orientations of key body segments using inertial sensors. It is validated against measured hiking moments and is demonstrated to work out on the water whilst sailing. Both these studies pave the way towards developing a Dynamic VPP for the international Moth, which can include unsteady human and foil interactions. © 2016 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the organizing committee of ISEA 2016
منابع مشابه
Presenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems
A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...
متن کاملInvestigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods
Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...
متن کاملNumerical Solution for Gate Induced Vibration Due to Under Flow Cavitation
Among the many force s to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting...
متن کاملFluid-Structure Interaction of Vibrating Composite Piezoelectric Plates Using Exponential Shear Deformation Theory
In this article fluid-structure interaction of vibrating composite piezoelectric plates is investigated. Since the plate is assumed to be moderately thick, rotary inertia effects and transverse shear deformation effects are deliberated by applying exponential shear deformation theory. Fluid velocity potential is acquired using the Laplace equation, and fluid boundary conditions and wet dynamic ...
متن کاملVibration analysis of a rectangular composite plate in contact with fluid
In this paper, modal analysis of the fluid-structure interaction has been investigated. Using classical laminated plate theory, a closed form solution for natural frequencies of FSI is extracted. For fluid, homogenous, inviscid and irrotational fluid flow is assumed. Then, a combined governing equation for the plate-fluid system is derived. In order to validate the equations and results, they a...
متن کامل